Title of article :
Semi-Lipschitz Functions and Best Approximation in Quasi-Metric Spaces Original Research Article
Author/Authors :
Salvador Romaguera، نويسنده , , Manuel Sanchis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
10
From page :
292
To page :
301
Abstract :
We show that the set of semi-Lipschitz functions, defined on a quasi-metric space (X, d), that vanish at a fixed point x0∈X can be endowed with the structure of a quasi-normed semilinear space. This provides an appropriate setting in which to characterize both the points of best approximation and the semi-Chebyshev subsets of quasi-metric spaces. We also show that this space is bicomplete.
Keywords :
* quasi-norm , * quasi-metric , * bicomplete , * best approximation , * semi-Lipschitz function
Journal title :
Journal of Approximation Theory
Serial Year :
2000
Journal title :
Journal of Approximation Theory
Record number :
851807
Link To Document :
بازگشت