Title of article :
Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle Original Research Article
Author/Authors :
Mourad E.H. Ismail ، نويسنده , , Nicholas S. Witte، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
29
From page :
200
To page :
228
Abstract :
We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle.
Keywords :
* discriminants , * differential equations , * polynomials orthogonal on the unit circle , * zeros
Journal title :
Journal of Approximation Theory
Serial Year :
2001
Journal title :
Journal of Approximation Theory
Record number :
851921
Link To Document :
بازگشت