Title of article :
Markov-Type Inequalities for Products of Müntz Polynomials Original Research Article
Author/Authors :
Tamas Erdelyi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
18
From page :
171
To page :
188
Abstract :
Let Λ≔(λj)∞j=0 be a sequence of distinct real numbers. The span of {xλ0, xλ1, …, xλn} over R is denoted by Mn(Λ)≔span{xλ0, xλ1, …, xλn}. Elements of Mn(Λ) are called Müntz polynomials. The principal result of this paper is the following Markov-type inequality for products of Müntz polynomials. Theorem 2.1.LetΛ≔(λj)∞j=0andΓ≔(γj)∞j=0be increasing sequences of nonnegative real numbers. LetK(Mn(Λ), Mm(Γ))≔sup ‖x(pq)′ (x)‖[0, 1]‖pq‖[0, 1]: p∈Mn(Λ), q∈Mm(Γ).Then13((m+1) λn+(n+1) γm)⩽K(Mn(Λ), Mm(Γ))⩽18(n+m+1)(λn+γm).In particular ,23(n+1) λn⩽K(Mn(Λ), Mn(Λ))⩽36(2n+1) λn. Under some necessary extra assumptions, an analog of the above Markov-type inequality is extended to the cases when the factor x is dropped, and when the interval [0, 1] is replaced by [a, b]⊂(0, ∞).
Keywords :
* Markov-type inequality , * Müntz polynomials , * lacunary polynomials , * Dirichlet sums
Journal title :
Journal of Approximation Theory
Serial Year :
2001
Journal title :
Journal of Approximation Theory
Record number :
851953
Link To Document :
بازگشت