• Title of article

    Completeness of Trigonometric System with Integer Indices {einx; x∈R}

  • Author/Authors

    Akio Arimoto، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    7
  • From page
    311
  • To page
    317
  • Abstract
    Necessary and sufficient conditions are given which ensure the completeness of the trigonometric systems with integer indices; {einx; x∈R}∞n=−∞ or {einx; x∈R}∞n=1 in Lα(μ, R), α⩾1. If there exists a support Λ of the measure μ which is a wandering set, that is, Λ+2kπ, k=0, ±1, ±2, … are mutually disjoint for different kʹs, then the linear span of our trigonometric system {einx; x∈R}∞n=−∞ is dense in Lα(μ, R) α⩾1. The converse statement is also true.
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2001
  • Journal title
    Journal of Approximation Theory
  • Record number

    851961