Title of article :
Completeness of Trigonometric System with Integer Indices {einx; x∈R}
Author/Authors :
Akio Arimoto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
7
From page :
311
To page :
317
Abstract :
Necessary and sufficient conditions are given which ensure the completeness of the trigonometric systems with integer indices; {einx; x∈R}∞n=−∞ or {einx; x∈R}∞n=1 in Lα(μ, R), α⩾1. If there exists a support Λ of the measure μ which is a wandering set, that is, Λ+2kπ, k=0, ±1, ±2, … are mutually disjoint for different kʹs, then the linear span of our trigonometric system {einx; x∈R}∞n=−∞ is dense in Lα(μ, R) α⩾1. The converse statement is also true.
Journal title :
Journal of Approximation Theory
Serial Year :
2001
Journal title :
Journal of Approximation Theory
Record number :
851961
Link To Document :
بازگشت