Title of article :
Best Approximation by the Inverse of a Monotone Polynomial and the Location Problem Original Research Article
Author/Authors :
Daniel Wulbert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
17
From page :
98
To page :
114
Abstract :
Let L={f∈C[0, 1]: f is non-decreasing, f(0)=0 and f(1)=1}. Let M be a class of monotone polynomials of degree n or less. Then each f∈L has a unique best uniform (or L1) approximation from {p−1: p∈M∩L}. The special case for M=Pn shows that the single-data-point location problem for a one-dimensional domain has a unique solution (uniform or L1-norm).
Keywords :
* location problem , * best approximations , * uniqueness , * monotone polynomials , * approximation of inverses , * uniform norm , * L1-norm , * non-linear
Journal title :
Journal of Approximation Theory
Serial Year :
2002
Journal title :
Journal of Approximation Theory
Record number :
851995
Link To Document :
بازگشت