Title of article :
Zeros of Sobolev Orthogonal Polynomials of Gegenbauer Type Original Research Article
Author/Authors :
W.G.M. Groenevelt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
26
From page :
115
To page :
140
Abstract :
Let {Sn}n denote the monic orthogonal polynomial sequence with respect to the Sobolev inner product〈f, g〉S=∫ f(x) g(x) dψ0 (x)+λ ∫ f(x) g(x) dψ1 (x), where λ>0 and {dψ0, dψ1} is a so-called symmetrically coherent pair, with dψ0 or dψ1 the classical Gegenbauer measure (x2−1)α dx, α>−1. If dψ1 is the Gegenbauer measure, then Sn has n different, real zeros. If dψ0 is the Gegenbauer measure, then Sn has at least n−2 different, real zeros. Under certain conditions Sn has complex zeros. Also the location of the zeros of Sn with respect to Gegenbauer polynomials, is studied.
Keywords :
* Sobolev orthogonal polynomials , * zeros , * symmetrically coherent pairs , * Gegenbauer polynomials
Journal title :
Journal of Approximation Theory
Serial Year :
2002
Journal title :
Journal of Approximation Theory
Record number :
851996
Link To Document :
بازگشت