• Title of article

    Zeros of Sobolev Orthogonal Polynomials of Gegenbauer Type Original Research Article

  • Author/Authors

    W.G.M. Groenevelt، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    26
  • From page
    115
  • To page
    140
  • Abstract
    Let {Sn}n denote the monic orthogonal polynomial sequence with respect to the Sobolev inner product〈f, g〉S=∫ f(x) g(x) dψ0 (x)+λ ∫ f(x) g(x) dψ1 (x), where λ>0 and {dψ0, dψ1} is a so-called symmetrically coherent pair, with dψ0 or dψ1 the classical Gegenbauer measure (x2−1)α dx, α>−1. If dψ1 is the Gegenbauer measure, then Sn has n different, real zeros. If dψ0 is the Gegenbauer measure, then Sn has at least n−2 different, real zeros. Under certain conditions Sn has complex zeros. Also the location of the zeros of Sn with respect to Gegenbauer polynomials, is studied.
  • Keywords
    * Sobolev orthogonal polynomials , * zeros , * symmetrically coherent pairs , * Gegenbauer polynomials
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2002
  • Journal title
    Journal of Approximation Theory
  • Record number

    851996