Title of article :
Lagrange Interpolation for the Disk Algebra: The Worst Case Original Research Article
Author/Authors :
Gerd Herzog، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
5
From page :
354
To page :
358
Abstract :
We consider Lagrange interpolation polynomials for functions in the disk algebra with nodes on the boundary of the unit disk. In case that the closure of the set of nodes does not cover the boundary of the unit disk we prove that there exists a residual set of functions in the disk algebra, such that the Lagrange interpolation polynomials of each of these functions form a dense subset of the space of all holomorphic functions defined on the unit disk.
Journal title :
Journal of Approximation Theory
Serial Year :
2002
Journal title :
Journal of Approximation Theory
Record number :
852020
Link To Document :
بازگشت