Title of article :
On the Convergence and Iterates of q-Bernstein Polynomials Original Research Article
Author/Authors :
Halil Oruç، نويسنده , , Necibe Tuncer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
13
From page :
301
To page :
313
Abstract :
The convergence properties of q-Bernstein polynomials are investigated. When q⩾1 is fixed the generalized Bernstein polynomials Bnf of f, a one parameter family of Bernstein polynomials, converge to f as n→∞ if f is a polynomial. It is proved that, if the parameter 00, as the number of iterates M→∞. Moreover, the iterates of the Boolean sum of Bnf converge to the interpolating polynomial for f at n+1 geometrically spaced nodes on [0,1].
Keywords :
iterates of the q-Bernstein operator , interpolation. , q-Bernstein polynomials , Stirling polynomials
Journal title :
Journal of Approximation Theory
Serial Year :
2002
Journal title :
Journal of Approximation Theory
Record number :
852055
Link To Document :
بازگشت