Title of article :
The maximal range problem for a quasidisk Original Research Article
Author/Authors :
Vladimir Andrievskii، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
16
From page :
52
To page :
67
Abstract :
Let G⊂C and D⊂C be simply connected domains such that 0∈G∩D. Denote by Pn, n∈N≔{1,2,…}, the set of all complex polynomials of degree at most n. LetPn(G,D)≔{p∈Pn: p(0)=0,p(G)⊂D}.Our main purpose is to find how large, i.e., how close to D, the “maximal polynomial range”Dn(G)≔⋃p∈Pn(G,D) p(G)can be. We consider G to be a quasidisk and D to be an arbitrary domain whose boundary consists of more than two points.
Keywords :
Quasiconformal maps , Maximal range , polynomial
Journal title :
Journal of Approximation Theory
Serial Year :
2003
Journal title :
Journal of Approximation Theory
Record number :
852146
Link To Document :
بازگشت