Title of article :
A best constant for bivariate Bernstein and Szász-Mirakyan operators Original Research Article
Author/Authors :
Jes?s De La Cal، نويسنده , , Javier C?rcamo، نويسنده , , Ana M. Valle، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
For classical Bernstein operators over the unit square, we obtain the best uniform constant in preservation of the usual l∞-modulus of continuity, at the same time we show that it coincides with the corresponding best uniform constant for bivariate Szász operators. The result validates a conjecture stated in a previous paper. The proof involves both probabilistic and analytic arguments, as well as numerical computation of some specific values.
Keywords :
Best constants , Modulus of continuity , Sz?sz–Mirakyan operators , Bernstein operators , binomial distribution , Bivariate operators , Poisson distribution
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory