• Title of article

    Best approximation and interpolation of (1+(ax)2)−1 and its transforms Original Research Article

  • Author/Authors

    D.S. Lubinsky، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    10
  • From page
    106
  • To page
    115
  • Abstract
    We show that Lagrange interpolants at the Chebyshev zeros yield best relative polynomial approximations of (1+(ax)2)−1 on [−1,1], and more generally of∫0∞ dμ(a)1+(ax)2,where μ is a suitably restricted measure. We use this to study relative approximation of (1+x2)−1 on an increasing sequence of intervals, and Lagrange interpolation of |x|γ. Moreover, we show how it gives a simple proof of identities for some trigonometric sums.
  • Keywords
    interpolation , best approximation
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2003
  • Journal title
    Journal of Approximation Theory
  • Record number

    852190