• Title of article

    The approximation property for spaces of holomorphic functions on infinite-dimensional spaces I Original Research Article

  • Author/Authors

    Sean Dineen، نويسنده , , Jorge Mujica، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    16
  • From page
    141
  • To page
    156
  • Abstract
    For an open subset U of a locally convex space E, let (H(U),τ0) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show that (H(U),τ0) has the approximation property for every open subset U of E. These theorems extend classical results of Aron and Schottenloher. As applications of these approximation theorems we characterize the spectra of certain topological algebras of holomorphic mappings with values in a Banach algebra.
  • Keywords
    Holomorphic function , (DFC)-space , Approximation property , Fréchet space
  • Journal title
    Journal of Approximation Theory
  • Serial Year
    2004
  • Journal title
    Journal of Approximation Theory
  • Record number

    852209