Title of article :
The approximation property for spaces of holomorphic functions on infinite-dimensional spaces I Original Research Article
Author/Authors :
Sean Dineen، نويسنده , , Jorge Mujica، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
For an open subset U of a locally convex space E, let (H(U),τ0) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show that (H(U),τ0) has the approximation property for every open subset U of E. These theorems extend classical results of Aron and Schottenloher. As applications of these approximation theorems we characterize the spectra of certain topological algebras of holomorphic mappings with values in a Banach algebra.
Keywords :
Holomorphic function , (DFC)-space , Approximation property , Fréchet space
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory