Title of article :
Where do homogeneous polynomials on ℓ1n attain their norm? Original Research Article
Author/Authors :
David Pérez-Garc??a، نويسنده , , Ignacio Villanueva-Fierro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
10
From page :
124
To page :
133
Abstract :
Using a ‘reasonable’ measure in P(2ℓ1n), the space of 2-homogeneous polynomials on ℓ1n, we show the existence of a set of positive (and independent of n) measure of polynomials which do not attain their norm at the vertices of the unit ball of ℓ1n. Next we prove that, when n grows, almost every polynomial attains its norm in a face of ‘low’ dimension.
Keywords :
Convex polytopes , Vertices , Faces , Polynomials , Extreme points
Journal title :
Journal of Approximation Theory
Serial Year :
2004
Journal title :
Journal of Approximation Theory
Record number :
852220
Link To Document :
بازگشت