Title of article :
Discrete spectrum in a critical coupling case of Jacobi matrices with spectral phase transitions by uniform asymptotic analysis Original Research Article
Author/Authors :
Serguei Naboko، نويسنده , , Irina Pchelintseva، نويسنده , , Luis O. Silva، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
23
From page :
314
To page :
336
Abstract :
For a two-parameter family of Jacobi matrices exhibiting first-order spectral phase transitions, we prove discreteness of the spectrum in the positive real axis when the parameters are in one of the transition boundaries. To this end, we develop a method for obtaining uniform asymptotics, with respect to the spectral parameter, of the generalized eigenvectors. Our technique can be applied to a wide range of Jacobi matrices.
Keywords :
First-order spectral phase transition , Discrete spectrum , Jacobi matrices , Uniform asymptotics
Journal title :
Journal of Approximation Theory
Serial Year :
2009
Journal title :
Journal of Approximation Theory
Record number :
852700
Link To Document :
بازگشت