Title of article :
Learning a function from noisy samples at a finite sparse set of points Original Research Article
Author/Authors :
Andreas Hofinger، نويسنده , , Friedrich Pillichshammer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
448
To page :
463
Abstract :
In learning theory the goal is to reconstruct a function defined on some (typically high dimensional) domain ΩΩ, when only noisy values of this function at a sparse, discrete subset ω⊂Ωω⊂Ω are available. In this work we use Koksma–Hlawka type estimates to obtain deterministic bounds on the so-called generalization error. The resulting estimates show that the generalization error tends to zero when the noise in the measurements tends to zero and the number of sampling points tends to infinity sufficiently fast
Keywords :
Sampling theory , Learning theory , Quasi-Monte Carlo methods , Regularization
Journal title :
Journal of Approximation Theory
Serial Year :
2009
Journal title :
Journal of Approximation Theory
Record number :
852708
Link To Document :
بازگشت