Title of article :
Orthogonality of Jacobi and Laguerre polynomials for general parameters via the Hadamard finite part Original Research Article
Author/Authors :
Rodica D. Costin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
141
To page :
152
Abstract :
Orthogonality of the Jacobi and Laguerre polynomials, View the MathML sourcePn(α,β) and View the MathML sourceLn(α), is established for View the MathML sourceα,β∈C∖Z−,α+β≠−2,−3,… using the Hadamard finite part of the integral which gives their orthogonality in the classical cases. Riemann–Hilbert problems that these polynomials satisfy are found. The results are formally similar to the ones in the classical case (when ℜα,ℜβ>−1ℜα,ℜβ>−1).
Keywords :
Jacobi polynomials , Laguerre polynomials , Orthogonality for general parameters , Riemann–Hilbert problems , Hadamard finite part
Journal title :
Journal of Approximation Theory
Serial Year :
2010
Journal title :
Journal of Approximation Theory
Record number :
852738
Link To Document :
بازگشت