Title of article :
Multivariate Bernstein–Durrmeyer operators with arbitrary weight functions Original Research Article
Author/Authors :
Elena E. Berdysheva، نويسنده , , Kurt Jetter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
23
From page :
576
To page :
598
Abstract :
In this paper we introduce a class of Bernstein–Durrmeyer operators with respect to an arbitrary measure ρρ on the dd-dimensional simplex, and a class of more general polynomial integral operators with a kernel function involving the Bernstein basis polynomials. These operators generalize the well-known Bernstein–Durrmeyer operators with respect to Jacobi weights. We investigate properties of the new operators. In particular, we study the associated reproducing kernel Hilbert space and show that the Bernstein basis functions are orthogonal in the corresponding inner product. We discuss spectral properties of the operators. We make first steps in understanding convergence of the operators.
Keywords :
Bernstein basis polynomials , Bernstein–Durrmeyer operator , Jacobi weight , Reproducing kernel Hilbert space , Korovkin type theorem
Journal title :
Journal of Approximation Theory
Serial Year :
2010
Journal title :
Journal of Approximation Theory
Record number :
852761
Link To Document :
بازگشت