Title of article :
Necessary conditions for metrics in integral Bernstein-type inequalities Original Research Article
Author/Authors :
Polina Yu. Glazyrina، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
1204
To page :
1210
Abstract :
Let TnTn be the set of all trigonometric polynomials of degree at most nn. Denote by Φ+Φ+ the class of all functions φ:(0,∞)→Rφ:(0,∞)→R of the form φ(u)=ψ(lnu)φ(u)=ψ(lnu), where ψψ is nondecreasing and convex on (−∞,∞)(−∞,∞). In 1979, Arestov extended the classical Bernstein inequality View the MathML source‖Tn′‖C≤n‖Tn‖C, Tn∈TnTn∈Tn, to metrics defined by φ∈Φ+φ∈Φ+: View the MathML source∫02πφ(|Tn′(t)|)dt≤∫02πφ(n|Tn(t)|)dt,Tn∈Tn. Turn MathJax on We study the question whether it is possible to extend the class Φ+Φ+, and prove that under certain assumptions Φ+Φ+ is the largest possible class.
Keywords :
Algebraic polynomials , Trigonometric polynomials , Bernstein-type inequalities , Integral inequalities
Journal title :
Journal of Approximation Theory
Serial Year :
2010
Journal title :
Journal of Approximation Theory
Record number :
852796
Link To Document :
بازگشت