Title of article :
The Möbius inversion formula for Fourier series applied to Bernoulli and Euler polynomials Original Research Article
Author/Authors :
Luis M. Navas، نويسنده , , Francisco J. Ruiz-Ruiz، نويسنده , , Juan L. Varona، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
19
From page :
22
To page :
40
Abstract :
Hurwitz found the Fourier expansion of the Bernoulli polynomials over a century ago. In general, Fourier analysis can be fruitfully employed to obtain properties of the Bernoulli polynomials and related functions in a simple manner. In addition, applying the technique of Möbius inversion from analytic number theory to Fourier expansions, we derive identities involving Bernoulli polynomials, Bernoulli numbers, and the Möbius function; this includes formulas for the Bernoulli polynomials at rational arguments. Finally, we show some asymptotic properties concerning the Bernoulli and Euler polynomials.
Keywords :
Rational arguments , Fourier series , Asymptotic properties , M?bius transform , Inversion formula , Euler polynomials , Bernoulli polynomials
Journal title :
Journal of Approximation Theory
Serial Year :
2011
Journal title :
Journal of Approximation Theory
Record number :
852855
Link To Document :
بازگشت