Title of article :
Polynomial reproduction for univariate subdivision schemes of any arity Original Research Article
Author/Authors :
Costanza Conti، نويسنده , , Kai Hormann ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
25
From page :
413
To page :
437
Abstract :
In this paper, we study the ability of convergent subdivision schemes to reproduce polynomials in the sense that for initial data, which is sampled from some polynomial function, the scheme yields the same polynomial in the limit. This property is desirable because the reproduction of polynomials up to some degree dd implies that a scheme has approximation order d+1d+1. We first show that any convergent, linear, uniform, and stationary subdivision scheme reproduces linear functions with respect to an appropriately chosen parameterization. We then present a simple algebraic condition for polynomial reproduction of higher order. All results are given for subdivision schemes of any arity m≥2m≥2 and we use them to derive a unified definition of general mm-ary pseudo-splines. Our framework also covers non-symmetric schemes and we give an example where the smoothness of the limit functions can be increased by giving up symmetry.
Keywords :
Polynomial reproduction , Approximation order , Subdivision schemes
Journal title :
Journal of Approximation Theory
Serial Year :
2011
Journal title :
Journal of Approximation Theory
Record number :
852876
Link To Document :
بازگشت