Title of article :
Maximum likelihood parameter estimation of a hybrid neural-classical structure for the simulation of bioprocesses Original Research Article
Author/Authors :
A. Hanomolo، نويسنده , , Ph. Bogaerts، نويسنده , , J. Graefe، نويسنده , , M. Cherlet، نويسنده , , J. Wérenne، نويسنده , , R. Hanus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
11
From page :
375
To page :
385
Abstract :
This paper proposes a hybrid structure for the modeling of a bioprocess: classical (in the form of a priori knowledge describing the mass balances) and neural (a radial basis function network describing the nonlinear reactions kinetics within these mass balances). The aim is to build a continuous simulator capable to reconstruct from initial conditions the trajectory of state variables (i.e. the main component concentrations) by considering also an aspect which usually is not taken into account in bioprocess modeling: the existence of important measurement errors. A clustering strategy is used for placing the Gaussian centers and a maximum likelihood cost function is defined for the estimation of the network weights and initial conditions for the simulator. The structure is tested on batch animal cell cultures for which rare and asynchronous measurements are available: glucose, glutamine, lactate and biomass concentrations.
Keywords :
Neural-classical structure , Maximum likelihood cost function , Bioprocesses
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2000
Journal title :
Mathematics and Computers in Simulation
Record number :
853595
Link To Document :
بازگشت