Title of article :
Intelligent clustering techniques for prediction of sugar production Original Research Article
Author/Authors :
V.G Kaburlasos، نويسنده , , V Spais، نويسنده , , V Petridis، نويسنده , , L Petrou، نويسنده , , Kazarlis، نويسنده , , N Maslaris، نويسنده , , A Kallinakis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
10
From page :
159
To page :
168
Abstract :
The accurate, and timely prediction of the annual sugar-beet crop yield is important to Sugar Industry because, based on it, the “harvest campaign” can be scheduled efficiently. This work presents intelligent clustering techniques for effecting efficient, small error prediction of the annual sugar-beet crop yield for the Hellenic Sugar Industry based on production and meteorological data acquired during a period of 11 years. The experiments here demonstrate that intelligent clustering techniques can provide with better estimates of sugar production than alternative prediction methods including an “energy conservation” system model.
Keywords :
Prediction of sugar production , Hellenic Sugar Industry , Clustering and classification , Mathematical models , Computational intelligence
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2002
Journal title :
Mathematics and Computers in Simulation
Record number :
853916
Link To Document :
بازگشت