Title of article
Applications of singular-value decomposition (SVD) Original Research Article
Author/Authors
Alkiviadis G. Akritas، نويسنده , , Gennadi I. Malaschonok، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
17
From page
15
To page
31
Abstract
Let A be an m×n matrix with m≥n. Then one form of the singular-value decomposition of A is A=UTΣV,where U and V are orthogonal and Σ is square diagonal. That is, UUT=Irank(A), VVT=Irank(A), U is rank(A)×m, V is rank(A)×n and Σ=σ10⋯000σ2⋯00⋮⋮⋱⋮⋮00⋯σrank(A)−1000⋯0σrank(A)is a rank(A)×rank(A) diagonal matrix. In addition σ1≥σ2≥⋯≥σrank(A)>0. The σi’s are called the singular values of A and their number is equal to the rank of A. The ratio σ1/σrank(A) can be regarded as a condition number of the matrix A.
Keywords
Singular-value decompositions , Aligner , Hanger , Applications , Stretcher
Journal title
Mathematics and Computers in Simulation
Serial Year
2004
Journal title
Mathematics and Computers in Simulation
Record number
854234
Link To Document