Title of article :
Reliable computation of a multiple integral involved in the neutron star theory Original Research Article
Author/Authors :
F. Jézéquel، نويسنده , , F. Rico، نويسنده , , Jean-Marie Chesneaux، نويسنده , , M. Charikhi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
18
From page :
44
To page :
61
Abstract :
τ(ε,v)=1ω(ε)∫0π/2dθsin⁡(θ)∫0∞dnn2∫0∞dph(n,p,θ,ε,v)h(n,p,θ,ε,v)=ψ(z)ϕ(n−ε−z)+ψ(−z)ϕ(n−ε+z)−ψ(z)ϕ(n+ε−z)−ψ(z)ϕ(n+ε+z)z=p2+(vsin⁡(θ))2,ψ(x)=1exp⁡x+1,ϕ(x)=xexp⁡x−1.The aim is to get a table for image for some values of image in image and then to interpolate for the others. We present a new strategy, using the Gauss–Legendre quadrature formula, which allows to have one code available whatever the values of image and image are. We guarantee the accuracy of the final result including both the truncation error and the round-off error using Discrete Stochastic Arithmetic.
Keywords :
Numerical validation , Neutron star , Multiple integral , Gauss–Legendre method , CESTAC method , Discrete Stochastic Arithmetic
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2006
Journal title :
Mathematics and Computers in Simulation
Record number :
854401
Link To Document :
بازگشت