Title of article :
On a class of spatial discretizations of equations of the nonlinear Schrödinger type Original Research Article
Author/Authors :
P.G. Kevrekidis، نويسنده , , S.V. Dmitriev، نويسنده , , A.A. Sukhorukov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
9
From page :
343
To page :
351
Abstract :
We demonstrate the systematic derivation of a class of discretizations of nonlinear Schrödinger (NLS) equations for general polynomial nonlinearity whose stationary solutions can be found from a reduced two-point algebraic condition. We then focus on the cubic problem and illustrate how our class of models compares with the well-known discretizations such as the standard discrete NLS equation, or the integrable variant thereof. We also discuss the conservation laws of the derived generalizations of the cubic case, such as the lattice momentum or mass and the connection with their corresponding continuum siblings.
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2007
Journal title :
Mathematics and Computers in Simulation
Record number :
854544
Link To Document :
بازگشت