Title of article :
Local refinement based on the 7-triangle longest-edge partition Original Research Article
Author/Authors :
angel Plaza، نويسنده , , Alberto M?rquez، نويسنده , , Auxiliadora Moreno-Gonz?lez، نويسنده , , Jose P. Suarez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
The triangle longest-edge bisection constitutes an efficient scheme for refining a mesh by reducing the obtuse triangles, since the largest interior angles are subdivided. In this paper we specifically introduce a new local refinement for triangulations based on the longest-edge trisection, the 7-triangle longest-edge (7T-LE) local refinement algorithm. Each triangle to be refined is subdivided in seven sub-triangles by determining its longest edge. The conformity of the new mesh is assured by an automatic point insertion criterion using the oriented 1-skeleton graph of the triangulation and three partial division patterns.
Keywords :
Local refinement , Skeleton , Longest-edge based algorithms
Journal title :
Mathematics and Computers in Simulation
Journal title :
Mathematics and Computers in Simulation