Title of article :
The discrete minimum principle for quadratic spline discretization of a singularly perturbed problem Original Research Article
Author/Authors :
K. Surla، نويسنده , , Z. Uzelac، نويسنده , , Lj. Teofanov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
2490
To page :
2505
Abstract :
We consider a singularly perturbed boundary value problem with two small parameters. The problem is numerically treated by a quadratic spline collocation method. The suitable choice of collocation points provides the discrete minimum principle. Error bounds for the numerical approximations are established. Numerical results give justification of the parameter-uniform convergence of the numerical approximations.
Keywords :
Spline difference schemes , Singular perturbation , Convection–diffusion problems , Two small parameters , Shishkin mesh
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2009
Journal title :
Mathematics and Computers in Simulation
Record number :
854717
Link To Document :
بازگشت