Title of article :
Soliton dynamics in linearly coupled discrete nonlinear Schrödinger equations Original Research Article
Author/Authors :
A. Trombettoni، نويسنده , , H.E. Nistazakis، نويسنده , , Z. Rapti، نويسنده , , D.J. Frantzeskakis، نويسنده , , P.G. Kevrekidis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
814
To page :
824
Abstract :
We study soliton dynamics in a system of two linearly coupled discrete nonlinear Schrödinger equations, which describe the dynamics of a two-component Bose gas, coupled by an electromagnetic field, and confined in a strong optical lattice. When the nonlinear coupling strengths are equal, we use a unitary transformation to remove the linear coupling terms, and show that the existing soliton solutions oscillate from one species to the other. When the nonlinear coupling strengths are different, the soliton dynamics is numerically investigated and the findings are compared to the results of an effective two-mode model. The case of two linearly coupled Ablowitz–Ladik equations is also briefly discussed.
Keywords :
DNLS equation , Soliton dynamics , Rabi oscillations , Ablowitz-Ladik equation , Multi-component systems
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2009
Journal title :
Mathematics and Computers in Simulation
Record number :
854872
Link To Document :
بازگشت