• Title of article

    Soliton dynamics in linearly coupled discrete nonlinear Schrödinger equations Original Research Article

  • Author/Authors

    A. Trombettoni، نويسنده , , H.E. Nistazakis، نويسنده , , Z. Rapti، نويسنده , , D.J. Frantzeskakis، نويسنده , , P.G. Kevrekidis، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    11
  • From page
    814
  • To page
    824
  • Abstract
    We study soliton dynamics in a system of two linearly coupled discrete nonlinear Schrödinger equations, which describe the dynamics of a two-component Bose gas, coupled by an electromagnetic field, and confined in a strong optical lattice. When the nonlinear coupling strengths are equal, we use a unitary transformation to remove the linear coupling terms, and show that the existing soliton solutions oscillate from one species to the other. When the nonlinear coupling strengths are different, the soliton dynamics is numerically investigated and the findings are compared to the results of an effective two-mode model. The case of two linearly coupled Ablowitz–Ladik equations is also briefly discussed.
  • Keywords
    DNLS equation , Soliton dynamics , Rabi oscillations , Ablowitz-Ladik equation , Multi-component systems
  • Journal title
    Mathematics and Computers in Simulation
  • Serial Year
    2009
  • Journal title
    Mathematics and Computers in Simulation
  • Record number

    854872