• Title of article

    On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes Original Research Article

  • Author/Authors

    Abdellatif Agouzal، نويسنده , , Konstantin Lipnikov، نويسنده , , Yuri V. Vassilevski، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    13
  • From page
    1949
  • To page
    1961
  • Abstract
    We describe a new method for generating meshes that minimize the gradient of a discretization error. The key element of this method is construction of a tensor metric from edge-based error estimates. In our papers we applied this metric for generating meshes that minimize the gradient of P1-interpolation error and proved that for a mesh with N triangles, the L2-norm of gradient of the interpolation error is proportional to N−1/2. In the present paper we recover the tensor metric using hierarchical a posteriori error estimates. Optimal reduction of the discretization error on a sequence of adaptive meshes will be illustrated numerically for boundary value problems ranging from a linear isotropic diffusion equation to a nonlinear transonic potential equation.
  • Keywords
    Metric-based adaptation , Finite element method , Quasi-optimal meshes
  • Journal title
    Mathematics and Computers in Simulation
  • Serial Year
    2011
  • Journal title
    Mathematics and Computers in Simulation
  • Record number

    855130