Title of article :
On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes Original Research Article
Author/Authors :
Abdellatif Agouzal، نويسنده , , Konstantin Lipnikov، نويسنده , , Yuri V. Vassilevski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
1949
To page :
1961
Abstract :
We describe a new method for generating meshes that minimize the gradient of a discretization error. The key element of this method is construction of a tensor metric from edge-based error estimates. In our papers we applied this metric for generating meshes that minimize the gradient of P1-interpolation error and proved that for a mesh with N triangles, the L2-norm of gradient of the interpolation error is proportional to N−1/2. In the present paper we recover the tensor metric using hierarchical a posteriori error estimates. Optimal reduction of the discretization error on a sequence of adaptive meshes will be illustrated numerically for boundary value problems ranging from a linear isotropic diffusion equation to a nonlinear transonic potential equation.
Keywords :
Metric-based adaptation , Finite element method , Quasi-optimal meshes
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2011
Journal title :
Mathematics and Computers in Simulation
Record number :
855130
Link To Document :
بازگشت