Title of article
A compactness result for periodic multivortices in the electroweak theory Original Research Article
Author/Authors
D. Bartolucci، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
21
From page
277
To page
297
Abstract
We derive a priori uniform bounds for solutions of an elliptic system of Liouville-type equations, first analyzed by J. Spruck and Y. Yang (Comm. Math. Phys. 144 (1992) 1), yielding periodic multivortices in the classical electroweak theory of Glashow–Salam–Weinberg. Our proof is based on a concentration–quantization result, in the same spirit of Brezis–Merle (Comm. Partial Differential Equations 16 (8,9) (1991) 1223) and Li–Shafrir (Indiana Univ. Math. J. 43 (4) (1994) 1255), for mean field equations on Riemannian compact 2-manifolds.
Keywords
Liouville-type equations , Mean field equations , Electroweak vortices , Concentration–compactness principle
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2003
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
858304
Link To Document