Title of article
Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces Original Research Article
Author/Authors
John G. OʹHara، نويسنده , , Paranjothi Pillay، نويسنده , , Hong-Kun Xu، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
10
From page
1417
To page
1426
Abstract
The iteration scheme xn+1=λn+1y+(1−λn+1)Tn+1xn is first considered for infinitely many nonexpansive maps T1,T2,T3,… in a Hilbert space. A result of Shimizu and Takahashi (J. Math. Anal. Appl. 211 (1997) 71) is generalized, and it is shown that the sequence of iterates converges to Py, where P is some projection. For this same iteration scheme, with finitely many maps T1,T2,…,TN, a complementary result to a result of Bauschke (J. Math. Anal. Appl. 202 (1996) 150) is proved by introducing a new condition on the sequence of parameters (λn). This condition improves Lions’ condition (C.R. Acad. Sci. Paris Sèr A-B 284 (1977) 1357). The iterates converge to Py, where P is the projection onto the intersection of the fixed point sets of the Tis.
Keywords
Iterative approach , Convex feasibility problem , Common fixed point , Nonexpansive mapping , nearest point projection
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2003
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
858438
Link To Document