Title of article :
The Lax solution to a Hamilton–Jacobi equation and its generalizations: Part 2
Original Research Article
Author/Authors :
Ya.V. Mykytiuk، نويسنده , , A.K. Prykarpatsky، نويسنده , , D. Blackmore and J. Meegoda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
It is proved that the function defined by the infimum-based Lax formula (for viscosity solutions) provides a solution almost everywhere in x for each fixed t>0 to the Hamilton–Jacobi, Cauchy problem
View the MathML source
where the Cauchy data function v is lower semicontinuous on real n-space. In addition, a generalization of the Lax formula is developed for the more inclusive Hamilton–Jacobi equation
View the MathML source
where J is a diagonal, positive-definite matrix.
Keywords :
semicontinuity , Lebesgue measure , F? set , Lax formula , viscosity solution , Hamilton–Jacobi equation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications