Title of article :
Multiplicity of periodic solutions of nonlinear wave equations Original Research Article
Author/Authors :
Massimiliano Berti، نويسنده , , Philippe Bolle، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
36
From page :
1011
To page :
1046
Abstract :
We prove multiplicity of small amplitude periodic solutions, with fixed frequency ω, of completely resonant wave equations with general nonlinearities. As ω→1 the number Nω of 2π/ω-periodic solutions u1,…,un,…,uNω tends to +∞. The minimal period of the nth solution un is 2π/nω. The proofs are based on the variational Lyapunov–Schmidt reduction (Comm. Math. Phys., to appear) and minimax arguments.1
Keywords :
nonlinear wave equation , Periodic solutions , Infinite-dimensional Hamiltonian systems , variational methods , Lyapunov–Schmidt reduction
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2004
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858554
Link To Document :
بازگشت