• Title of article

    Multiplicity of periodic solutions of nonlinear wave equations Original Research Article

  • Author/Authors

    Massimiliano Berti، نويسنده , , Philippe Bolle، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    36
  • From page
    1011
  • To page
    1046
  • Abstract
    We prove multiplicity of small amplitude periodic solutions, with fixed frequency ω, of completely resonant wave equations with general nonlinearities. As ω→1 the number Nω of 2π/ω-periodic solutions u1,…,un,…,uNω tends to +∞. The minimal period of the nth solution un is 2π/nω. The proofs are based on the variational Lyapunov–Schmidt reduction (Comm. Math. Phys., to appear) and minimax arguments.1
  • Keywords
    nonlinear wave equation , Periodic solutions , Infinite-dimensional Hamiltonian systems , variational methods , Lyapunov–Schmidt reduction
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2004
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    858554