Title of article
Multiplicity of periodic solutions of nonlinear wave equations Original Research Article
Author/Authors
Massimiliano Berti، نويسنده , , Philippe Bolle، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
36
From page
1011
To page
1046
Abstract
We prove multiplicity of small amplitude periodic solutions, with fixed frequency ω, of completely resonant wave equations with general nonlinearities. As ω→1 the number Nω of 2π/ω-periodic solutions u1,…,un,…,uNω tends to +∞. The minimal period of the nth solution un is 2π/nω. The proofs are based on the variational Lyapunov–Schmidt reduction (Comm. Math. Phys., to appear) and minimax arguments.1
Keywords
nonlinear wave equation , Periodic solutions , Infinite-dimensional Hamiltonian systems , variational methods , Lyapunov–Schmidt reduction
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2004
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
858554
Link To Document