Title of article
Asymptotic spatial homogeneity in periodic quasimonotone reaction–diffusion systems with a first integral Original Research Article
Author/Authors
Mats Gyllenberg، نويسنده , , Yi Wang، نويسنده , , Jifa Jiang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
10
From page
235
To page
244
Abstract
The asymptotic spatial homogeneity of nonnegative solutions to a ττ-periodic quasimonotone reaction–diffusion-type initial-boundary value problem is established, provided the system possesses a first integral. The infinite-dimensional dynamical system generated by the system of PDEs is monotone but not strongly monotone. Results combining simple monotonicity with infinite dimensionality have not appeared in the literature. We apply our result to a cooperative Lotka–Volterra system with spatial diffusion.
Keywords
Monotonicity , First integral , Diffusion-reaction
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2004
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
858700
Link To Document