Title of article :
Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev–Hardy exponents Original Research Article
Author/Authors :
Dongsheng Kang، نويسنده , , Yinbin Deng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
25
From page :
729
To page :
753
Abstract :
Let Ω⊂RNΩ⊂RN be a smooth bounded domain such that 0∈Ω0∈Ω, N⩾3N⩾3, 0⩽s<20⩽s<2, 2*(s):=2(N-s)/N-22*(s):=2(N-s)/N-2 is the critical Sobolev–Hardy exponent, f(x)f(x) is a given function. By using the Ekelandʹs variational principle and the mountain pass lemma, we prove the existence of multiple solutions for the singular critical inhomogeneous problem View the MathML source-Δu-μu|x|2=|u|2*(s)-2|x|su+λu+f(x) Turn MathJax on with Dirichlet boundary condition on ∂Ω∂Ω under some assumptions on f(x)f(x), λλ and μμ.
Keywords :
Critical Sobolev–Hardy exponents , compactness , Multiple solutions , variational methods , Singularity
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858809
Link To Document :
بازگشت