Title of article :
Hopf bifurcation analysis in a delayed Nicholson blowflies equation Original Research Article
Author/Authors :
Junjie Wei، نويسنده , , Michael Y. Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
17
From page :
1351
To page :
1367
Abstract :
The dynamics of a Nicholsonʹs blowflies equation with a finite delay are investigated. We prove that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu (Trans. Amer. Math. Soc. 350 (1998) 4799), and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney (J. Differential Equations 106 (1994) 27).
Keywords :
delay equations , Periodic solutions , Hopf bifurcations , Nicholsonיs blowflies
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858841
Link To Document :
بازگشت