Title of article :
A strongly degenerate quasilinear elliptic equation Original Research Article
Author/Authors :
F. Andreu، نويسنده , , V. Caselles، نويسنده , , J.M. Maz?n، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
33
From page :
637
To page :
669
Abstract :
We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation View the MathML sourceu-diva(u,Du)=v, where 0⩽v∈L1(RN)∩L∞(RN)0⩽v∈L1(RN)∩L∞(RN), a(z,ξ)=∇ξf(z,ξ)a(z,ξ)=∇ξf(z,ξ), and f is a convex function of ξξ with linear growth as ∥ξ∥→∞∥ξ∥→∞, satisfying other additional assumptions. In particular, this class of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of this work, using Crandall–Liggettʹs iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic Cauchy problem.
Keywords :
Quasilinear elliptic equations , Flux limited diffusion equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858885
Link To Document :
بازگشت