Title of article :
Subharmonic bifurcations in a perturbed nonlinear oscillation Original Research Article
Author/Authors :
Zhirong He، نويسنده , , Weinian Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
35
From page :
1057
To page :
1091
Abstract :
In this paper we discuss subharmonic bifurcations inside the homoclinic orbits and outside for a general form of perturbed two-dimensional Hamiltonian systems with a pair of real parameters λ,μλ,μ and a pair of function parameters g1,f1g1,f1. By approximating periodic orbits to homoclinic orbits, we determine bifurcation curves for (λ,μ)(λ,μ) in R2R2 and bifurcation manifolds for (g1,f1)(g1,f1) in the corresponding space of functions. Furthermore, we determine the codimensions of those bifurcation manifolds. All results on subharmonic bifurcations are given with conditions on homoclinic orbits. Our results generalize Hale and Spezamiglioʹs in Nonlinear Anal. 9 (1985) 181.
Keywords :
Subharmonic bifurcation , Homoclinic orbit , Liapunov–Schmidt reduction , Bifurcation manifold , periodic orbit
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858906
Link To Document :
بازگشت