Title of article :
Factorization of a hierarchy of the lattice soliton equations from a binary Bargmann symmetry constraint Original Research Article
Author/Authors :
Xi-Xiang Xu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
16
From page :
1225
To page :
1240
Abstract :
Staring from a discrete spectral problem, a hierarchy of the lattice soliton equations is derived. It is shown that each lattice equation in resulting hierarchy is Liouville integrable discrete Hamiltonian system. The binary nonlinearization of the Lax pairs and the adjoint Lax pairs of the resulting hierarchy is discussed. Each lattice soliton equation in the resulting hierarchy can be factored by an integrable symplectic map and a finite-dimensional integrable system in Liouville sense. Especially, factorization of a discrete Kdv equation is given.
Keywords :
Lattice soliton equation , Lax pair , Discrete Hamiltonian system , Binary nonlinearization , Integrable symplectic map , Finite-dimensional integrable system
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858914
Link To Document :
بازگشت