Title of article :
Periodic solutions for a class of non-autonomous Hamiltonian systems
Original Research Article
Author/Authors :
Shixia Luan، نويسنده , , Anmin Mao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
We consider the existence of nontrivial periodic solutions for a superlinear Hamiltonian system:
View the MathML source(H)Ju˙-A(t)u+∇H(t,u)=0,u∈R2N,t∈R.
Turn MathJax on
We prove an abstract result on the existence of a critical point for a real-valued functional on a Hilbert space via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under the Cerami-type condition instead of Palais–Smale-type condition. In addition, the main assumption here is weaker than the usual Ambrosetti–Rabinowitz-type condition:
View the MathML source0<μH(t,u)⩽u·∇H(t,u),μ>2,|u|⩾R>0.
Turn MathJax on
This result extends theorems given by Li and Willem (J. Math. Anal. Appl. 189 (1995) 6–32) and Li and Szulkin (J. Differential Equations 112 (1994) 226–238).
Keywords :
Cerami condition , local linking , Periodic solutions , Hamiltonian system
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications