Title of article :
A Banach algebra of functions of several variables of finite total variation and Lipschitzian superposition operators. I Original Research Article
Author/Authors :
Vyacheslav V. Chistyakov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
20
From page :
559
To page :
578
Abstract :
It is shown that the space of functions of n real variables with finite total variation in the sense of Vitali, Hardy and Krause, defined on a rectangle View the MathML sourceIab⊂Rn, is a Banach algebra under the pointwise operations and Hildebrandt–Leonovʹs norm. This result generalizes the classical case of functions of bounded Jordan variation on an interval View the MathML sourceIab=[a,b] for n=1n=1 and a previous result of the author in [Monatsh. Math. 137(2) (2002) 99–114] for n=2n=2.
Keywords :
Banach algebra property , superposition operator , Functions of several variables , Lipschitz condition , Finite total variation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858962
Link To Document :
بازگشت