Author/Authors :
T. Godoy، نويسنده , , J. Hern?ndez، نويسنده , , U. Kaufmann، نويسنده , , S. Paczka، نويسنده ,
Abstract :
Let Ω⊂RNΩ⊂RN be a smooth bounded domain. We study existence of positive solutions for some singular Dirichlet periodic parabolic problems of the form Lu=-g(x,t,u)+λh(x,t,u)Lu=-g(x,t,u)+λh(x,t,u) in Ω×RΩ×R, where s→g(x,t,s)s→g(x,t,s) is nonincreasing and has a singularity at s=0s=0 that behaves like s-αs-α and s→h(x,t,s)s→h(x,t,s) is nondecreasing, superlinear at the origin and sublinear at infinity. These results remain true for the corresponding elliptic problems.