Title of article :
A lower semicontinuity result for some integral functionals in the space SBD Original Research Article
Author/Authors :
François Ebobisse، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
19
From page :
1333
To page :
1351
Abstract :
The purpose of this paper is to study the lower semicontinuity with respect to the strong L1L1-convergence, of some integral functionals defined in the space SBD of special functions with bounded deformation. Precisely, we prove that, if u∈SBD(Ω)u∈SBD(Ω), (uh)⊂SBD(Ω)(uh)⊂SBD(Ω) converges to u strongly in L1(Ω,Rn)L1(Ω,Rn) and the measures |Ejuh||Ejuh| converge weakly ** to a measure νν singular with respect to the Lebesgue measure, then View the MathML source∫Ωf(x,Eu)dx⩽liminfh→∞∫Ωf(x,Euh)dx Turn MathJax on provided the integrand f satisfies a weak convexity property and standard growth assumptions of order p>1p>1.
Keywords :
Functions with bounded deformation , Integral functionals , lower semicontinuity , Symmetric quasiconvexity
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859012
Link To Document :
بازگشت