Title of article :
Global convergence of a kinetic model of chemotaxis to a perturbed Keller–Segel model Original Research Article
Author/Authors :
Fabio A.C.C. Chalub، نويسنده , , Kyungkeun Kang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
10
From page :
686
To page :
695
Abstract :
We consider a class of kinetic models of chemotaxis with two positive non-dimensional parameters coupled to a parabolic equation of the chemo-attractant. If both parameters are set equal zero, we have the classical Keller–Segel model for chemotaxis. We prove global existence of solutions of this two-parameters kinetic model and prove convergence of this model to models of chemotaxis with global existence when one of these two parameters is set equal zero. In one case, we find as a limit model a kinetic model of chemotaxis while in the other case we find a perturbed Keller–Segel model with global existence of solutions.
Keywords :
Diffusion limits , chemotaxis , Kinetic models
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2006
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859221
Link To Document :
بازگشت