Title of article :
The Domínguez–Lorenzo condition and multivalued nonexpansive mappings
Original Research Article
Author/Authors :
Sompong Dhompongsa، نويسنده , , Anchalee Kaewcharoen، نويسنده , , Attapol Kaewkhao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Let E be a nonempty bounded closed convex separable subset of a reflexive Banach space X which satisfies the Domínguez–Lorenzo condition, i.e., an inequality concerning the asymptotic radius of a sequence and the Chebyshev radius of its asymptotic center. We prove that a multivalued nonexpansive mapping T:E→2XT:E→2X which is compact convex valued and such that T(E)T(E) is bounded and satisfies an inwardness condition has a fixed point. As a consequence, we obtain a fixed-point theorem for multivalued nonexpansive mappings in uniformly nonsquare Banach spaces which satisfy the property WORTH, extending a known result for the case of nonexpansive single-valued mappings. We also prove a common fixed point theorem for two nonexpansive commuting mappings t:E→Et:E→E and T:E→KC(E)T:E→KC(E) (where KC(E)KC(E) denotes the class of all compact convex subsets of E) when X is a uniformly convex Banach space.
Keywords :
uniform convexity , Non-strict opial condition , James constant , Property WORTH , Multivalued nonexpansive mapping , Inwardness condition , Uniform nonsquareness
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications