Title of article :
Regularity properties of optimal controls for problems with time-varying state and control constraints Original Research Article
Author/Authors :
Ilya A. Shvartsman، نويسنده , , Richard B. Vinter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
27
From page :
448
To page :
474
Abstract :
In this paper we report new results on the regularity of optimal controls for dynamic optimization problems with functional inequality state constraints, a convex time-dependent control constraint and a coercive cost function. Recently, it has been shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, positive linear independence condition, that requires linear independence merely with respect to non-negative weighting parameters, provided the control constraint set is independent of the time variable. We show that, if the control constraint set, regarded as a time-dependent multifunction, is merely Lipschitz continuous with respect to the time variable, then optimal controls can fail to be Lipschitz continuous. In these circumstances, however, a weaker Hölder continuity-like regularity property can be established. On the other hand, Lipschitz continuity of optimal controls is guaranteed for time-varying control sets under a positive linear independence hypothesis, when the control constraint sets are described, at each time, by a finite collection of functional inequalities.
Keywords :
Lipschitz controls , Normal necessary conditions , Optimal control
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2006
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859378
Link To Document :
بازگشت