Title of article :
Analysis of switched normal discrete-time systems
Original Research Article
Author/Authors :
Guisheng Zhai، نويسنده , , Hai Lin، نويسنده , , Xuping Xu، نويسنده , , Joe Imae، نويسنده , , Tomoaki Kobayashi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
In this paper, we study stability and L2L2 gain properties for a class of switched systems which are composed of normal discrete-time subsystems. When all subsystems are Schur stable, we show that a common quadratic Lyapunov function exists for all subsystems and that the switched normal system is exponentially stable under arbitrary switching. For L2L2 gain analysis, we introduce an expanded matrix including each subsystem’s coefficient matrices. Then, we show that if the expanded matrix is normal and Schur stable so that each subsystem is Schur stable and has unity L2L2 gain, then the switched normal system also has unity L2L2 gain under arbitrary switching. The key point is establishing a common quadratic Lyapunov function for all subsystems in the sense of unity L2L2 gain.
Keywords :
Switched normal systems , Stability , L2L2 gain , Common quadratic Lyapunov functions , LMI
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications