Title of article
Axisymmetric solutions to the image Euler equations Original Research Article
Author/Authors
Shen Gang، نويسنده , , Zhu Xiangrong، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
11
From page
1938
To page
1948
Abstract
Here we consider the 3D3D incompressible Euler equations with axisymmetric velocity without swirl. First we will show that if View the MathML sourceu0∈Cs∩L2,s>1, and View the MathML sourceω0(x)≤Cx12+x22, then there exists a unique u∈C([0,∞);Cs)u∈C([0,∞);Cs) that solves the equation. This conclusion improves on the related results given by Majda [A.L. Bertozzi, A. Majda, Vorticity and Incompressible Flow, in: Cambridge Texts in Applied Mathematics, vol. 27, 2002; A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986) S187–S220] and by Raymond [X. Saint Raymond, Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations 19 (1994) 321–334].
On the other hand, if u0∈L2,ω0∈L∞u0∈L2,ω0∈L∞ and View the MathML sourceω0x12+x22∈L∞, then there exists a unique quasilipschitzian solution View the MathML sourceu∈C([0,∞);C∗1). This improves on the corresponding results due to Raymond [X. Saint Raymond, Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations, 19 (1994) 321–334] and to Chae and Kim [D. Chae, N. Kim, Axisymmetric weak solutions of the 3D3D Euler equations for incompressible fluid flows, Nonlinear Anal. 29(12) (1997) 1393–1404].
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2007
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
859637
Link To Document