Title of article :
Strong solutions to the nonlinear heat equation in homogeneous Besov spaces Original Research Article
Author/Authors :
Changxing Miao، نويسنده , , Baoquan Yuan، نويسنده , , Bo Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
15
From page :
1329
To page :
1343
Abstract :
In this paper we study the Cauchy problem of the nonlinear heat equation in homogeneous Besov spaces View the MathML sourceḂp,rs(Rn) with s<0s<0. The nonlinear estimate is established by means of the Littlewood–Paley trichotomy and is used to prove the global well-posedness of solutions for small initial data in the homogeneous Besov space View the MathML sourceḂp,rs(Rn) with s=n/p−2/b<0s=n/p−2/b<0. In particular, when r=∞r=∞ and the initial data φφ satisfies that View the MathML sourceλ2bφ(λx)=φ(x) for any λ>0λ>0, our result leads to the existence of global self-similar solutions to the problem.
Keywords :
Littlewood–Paley trichotomy , Nonlinear heat equation , Well-posedness , Besov spaces
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859812
Link To Document :
بازگشت