Title of article :
Hadamard well-posedness for a class of nonlinear shallow shell problems
Original Research Article
Author/Authors :
John Cagnol، نويسنده , , Irena Lasiecka، نويسنده , , Catherine Lebiedzik، نويسنده , , Richard Marchand، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
This paper is concerned with the nonlinear shallow shell model introduced in 1966 by W.T. Koiter in [On the nonlinear theory of thin elastic shells. III, Nederl. Akad. Wetensch. Proc. Ser. B 69 (1966) 33–54, Section 11] and later studied in [M. Bernadou, J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl. (9) 60(3) (1981) 285–308]. We consider a version of this model which is based upon the intrinsic shell modeling techniques introduced by Michel Delfour and Jean-Paul Zolésio. We show existence and uniqueness of both regular and weak solutions to the dynamical model and that the solutions are continuous with respect to the initial data. While existence and uniqueness of regular solutions to nonlinear dynamic shell equations has been known, full Hadamard well-posedness of weak solutions, as shown in this paper, is a new result which solves an old open problem in the field.
Keywords :
Koiter nonlinear shell model , Intrinsic geometric shell modeling , Uniqueness , continuous dependence , Hyperbolic partial differential equation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications